Linear Regression in Python| Simple Regression, Multiple Regression, Ridge Regression, Lasso and subset selection also
What you’ll learn
- Learn how to solve a real-life problem using the Linear Regression technique
- Preliminary analysis of data using Univariate and Bivariate analysis before running Linear regression
- Predict future outcomes basis past data by implementing the Simplest Machine Learning algorithm
- Understand how to interpret the result of the Linear Regression model and translate them into actionable insight
- Understanding of basics of statistics and concepts of Machine Learning
- In-depth knowledge of data collection and data preprocessing for Machine Learning Linear Regression problem
- Learn advanced variations of the OLS method of Linear Regression
- The course contains an end-to-end DIY project to implement your learnings from the lectures
- How to convert a business problem into a Machine learning Linear Regression problem
- Basic statistics using Numpy library in Python
- Data representation using Seaborn library in Python
- Linear Regression technique of Machine Learning using Scikit Learn and Statsmodel libraries of Python
Requirements
- Students will need to install Python and Anaconda software, but we have a separate lecture to help you install the same
Who this course is for:
- People pursuing a career in data science
- Working Professionals beginning their Data journey
- Statisticians needing more practical experience
- Anyone curious to master Linear Regression from beginner to Advanced in a short span of time
No comments:
Post a Comment